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Abstract-The flame zone model proposed by Libby and Economos is shown to be based upon the 
assumption of a one-step reversible chemical reaction with a large activation energy. The limit of large 
activation energies is exploited by the method of matched asymptotic expansions and the originally 
missing relation for the critical freezing temperature-essential for the flame zone model-is derived. It is 
found that the process of freezing is closely related to the flame propagation in an inhomogeneous 
mixture. The derivation is general but, following the original paper, the numerical results are presented 
for a locally similar partly premixed boundary layer diffusion flame. The flame zone is constructed as a 
two-dimensional region of chemical equilibrium bounded by two infinitely thin non-equilibrium layers 

that assure the transition to the surrounding frozen flow. 
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NOMENCLATURE 

parameter, equation (A24) ; 
parameter, equation (39); 
frequency factor; 

Chapman-Rubesin-parameter, p&p),; 
diffusion coefficient ; 
Damkiihler number, equation (14); 
specific heat capacity, equation (26); 
activation energy ; 
non-dimensional velocity, y/u,; 
non-dimensional total enthalpy, equation 

(25); 
specific enthalpy of ith species ; 
specific enthalpy; 
freestream total enthalpy; 
heat of reaction, equation (24); 
equilibrium constant, equation (3); 
Lewis number p Dc,/A ; 

mean molecular weight ; 
molecular weight of species ; 
non-dimensional chemical production rate; 

slope coefficient, equation (53); 
burning rate coefficient, equation (53); 
order of preexponential temperature 
dependence : 

n,,n,,n,, reaction orders; 

n,, 
Pt 
Pr, 
R, 

sum of reaction orders, n, = n, + n2 - 1; 
pressure; 
Prandtl number, pc,/il; 
universal gas constant ; 
reaction rate, equation (2); 
radial distance from axis of symmetry for 
axisymmetric flow; 
co-ordinate, equation (A15); 
tangential similarity co-ordinate; 
absolute temperature; 
non-dimensional activation energy, 
equation (15); 

K 

V, 
tangential velocity component ; 
non-dimensional normal velocity, 

v = 21[ f tall/ax + pU(2s)- ““]/(a~~) ; 
fJ, normal velocity component ; 
% tangential co-ordinate; 

Y, normal co-ordinate; 

$ mass fraction of ith species ; 
rj, mass fraction of jth element; 

Z, equilibrium function, equation (12) ; 
Z1,Z,, expansion of the equilibrium function. 

Greek symbols 

non-dimensional free stream pressure 
gradient; 

expansion parameter, equation (36); 
stretched co-ordinate, equation (33); 
normal similarity co-ordinate, equation (4); 
non-dimensional temperature; 
exponent, K = 0 planar flow, K = 1 
axisymmetric flow ; 
thermal conductivity; 
eigenvalue of equation (43); 
dynamic viscosity of mixture ; 
stoichiometric coefficients (backward minus 
forward) ; 
stretched co-ordinate, equation (A17); 
density ; 
first expansion coefficient of Y, ; 
first expansion coefficient of 8; 
mass fraction ratio of injected mixture. 

Subscripts and superscripts 

c, critical freezing location ; 
e, boundary layer edge; 

e9, equilibrium flow ; 
f> frozen flow; 

1, ith species; 
im, intermediate ; 
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I> jth element; 

W, wall ; 
( 1-t injected quantity; 
( )‘, partial derivative in n-direction. 

INTRODUCTION 

ANALWNG a hydrogen-oxygen boundary-layer dif- 
fusion flame, Libby and Economos [l] proposed to 
replace the well-known flame sheet model by a flame 
zone model “based on the concept of a critical 
temperature to distinguish between regions of frozen 
and equilibrium flow”. The basic concept of the 

model is the following: in the center of the flame, 
where the temperature is high, there exists a region 
of local chemical equilibrium. As the temperature 
decreases to the sides of the flame down to a critical 

temperature T,, the chemical equilibrium can no 
longer be maintained because the chemical reactions 
freeze abruptly at this temperature. Thus frozen flow 
exists immediately adjacent to the equilibrium 
region. 

No definite procedure to calculate the temperature 
T, was given in [l], but it was proposed that it 
corresponds to a kinetically determined temperature 
such as the ignition temperature. In fact, the freezing 
temperature was understood as the one parameter 

that represents the chemical kinetics and its in- 
troduction had the immediate advantage to make 
the chemical kinetics disappear from the equations. 
Thus the flame zone model was applicable to a flame 
situation which could not be treated by the flame 
sheet model: that of a partly premixed diffusion 
flame. In a boundary layer this flame situation 
occurs if a fuel/oxidizer mixture rather than pure fuel 
is injected through a porous surface into an 
oncoming air stream. Experimentally such a flame 
has been established for instance by Yamaoka and 

Tsuji in a stagnation point boundary layer [2,3]. 
In jet diffusion flames premixed burning occurs 

more naturally: In lifted flames there is always a 
region where the gases are premixed before they will 
eventually burn in a diffusion flame. If the flame is 
turbulent the quality of the premixing and the way 
the flame consumes a certain “unmixedness” is 
decisive for the rate of turbulent combustion. Under 
this aspect the underlying idea of local freezing and 
the way that this is related to premixed burning may 
contribute to the understanding of turbulent dif- 
fusion flames. In particular, as it reintroduces the 
chemical kinetics, the flame zone model closes the 
gap between the treatment of premixed and diffusion 
flames. 

However, before the model can be applied to more 
complex flame situations, the physical condition 
under which the freezing occurs is to be derived and 
based upon this, a more rigorous mathematical 
procedure that determines the freezing temperature 
is required. In a previous paper [4] on a non- 
equilibrium flat plate boundary-layer diffusion flame 
using elementary reactions, the author analysed 
numerically the structure of the chemical production 

rates. For some of the reactions he observed an 
abrupt freezing at two different positions within the 
boundary layer. This appeared to be related to the 
flame zone model and it was suggested that the 
physical justification of the model may be sought by 
examining the limit of large activation energies. 
Lit% [S], treating counter flow diffusion flames in 
the asymptotic limit of large activation energies, 
seemed to have been aware of this, when he 
remarked in a footnote that the flame zone model 
requires a kinetic scheme that differs from the one- 
step-irreversible reaction that he used. As we will see, 
a one-step-reversible reaction will be adequate. 

The aim of the present paper is to present a 
physical and mathematical justification of the flame 
zone model on the basis of an asymptotic analysis. 
As a reference frame the configuration of Libby and 
Economos will again be taken up. In particular, the 
value of the freezing temperature that is determined 
from the analysis will be of interest and it will be 
seen that there are two different freezing tempera- 
tures on either side of the flame, the temperature T,, 
on the fuel rich side and the temperature Tc2 on the 
fuel lean side. These temperatures do also depend on 
the ratio of the flow time to the residence time in the 

boundary layer and thus on the distance from the 

leading edge. 

ANALYSIS 

Chemical kinetics 
As in [l] a laminar boundary-layer flow over a 

porous surface will be considered. A premixed 
hydrogen-oxygen mixture is injected into the boun- 
dary layer through the pores of the surface and mixes 
there with the oncoming air stream. As some of the 
simplifying assumptions in [l] are not substantial for 

the subsequent analysis, they will be introduced only 
at the point where a comparison with the results of 
[l] is made. On the other hand a specification of the 
chemical kinetics omitted in [l] is essential: It will 
be assumed that a one-step reversible reaction takes 
place between hydrogen (subscript 1) and oxygen 
(subscript 2) to yield water vapour (subscript 3), 
while nitrogen (subscript 4) remains inert. 

2H,+O, +2H20. 

The reaction rate is defined by: 

(1) 

1 
x y/1 y;z - - y;’ 

> K, ’ 
(2) 

where K, is an artificial equilibrium constant: 

K, = (Y;3/Y;’ Y;l)eq, (3) 

which is defined such as to make the last term in 
equation (2) vanish at local chemical equilibrium. 
The equilibrium mass fractions in equation (3) are 
determined by the law of mass action. If the reaction 
orders were equal to the stoichiometric coefficients of 
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the combustion reaction, K, would be the equilib- 
rium constant in terms of the mass fractions. The 
kinetic expression for a one-step-irreversible reaction 
is obtained from equation (2) by setting K, equal to 
infinity. 

Di$erential equations 
In the similarity plane: 

s 

x 
5 = (pn), u,r;” dx 

0 

s 

Y 
yI = U,r;(2:)-“2 P dy, 

0 

(4) 

the boundary-layer equations are in dimensionless 
form [6] [7] : 

continuity: 

(5) 

momentum: 

total enthalpy: 

(7) 

species mass fractions: 

2sF.!g+vp! CLes +l\;ii; 
aq ( > Pr all 

element mass fractions: 

(i = 1,2,3,4) (8) 

aq aE a CL~ aq 
2.Sf’-gV-=- __-. 

aq ( > atj or aq 
(j = 1,2) (9) 

Here it has been assumed that the Lewis numbers of 
all species are equal. The element mass fraction 
equations are obtained by summation over the 
species mass fraction equations using the condition 
of element conservation during a chemical reaction. 

In [l] only equations (6) (7), (9) and (8), have 
been employed. Thus, the chemical kinetics did not 
come into play (they were replaced by the in- 
troduction of the critical freezing temperature). The 
nondimensional chemical production rate, essential 
in the present study, is defined by: 

2i viMir 
n;i,=-------- 

u,ayax p ’ 
(10) 

where the stoichiometric coefficients vi (backward 
minus forward) are vi = -2, v2 = - 1, v3 = 2. In 
order not to restrict the analysis to the 

hydrogen-oxygen reaction, we carry the vI)s along 
and, whenever it appears suitable, we will introduce 
a negative sign before vr and v2 in order to handle 
with positive coefficients. 

Introducing the non-dimensional temperature: 

“=f (11) 
e 

and the equilibrium function Z: 

1 
z = y;1 y;2 - - Y”J 

K, 3’ 
(12) 

the non-dimensional chemical production rate is 
written: 

A$i=vi$Da~)CB”cexp{-~}%. (13) 

Here the Damkohler number Da and the non- 
dimensional activation energy are defined : 

Da = 
~;BB~FM,M;“‘M;“~TJ’ 

u,aijax (14) 

T, = E/RT,, (15) 

where n, = n, + n2 - 1. It is seen that the Damkohler 
number, representing the ratio of the residence time to 
the reaction time, is a function ofthe station s‘within the 
boundary layer. Specifically, for a flat plate boundary 
layer with constant freestream velocity U, one obtains: 

Da = 
~xB~~M,M;“‘M;“~~ 

(16) 
ut3 

showing that it is proportional to the distance from 
the leading edge. 

The density ratio and the mean molecular weight 
required in equation (13) may be calculated from: 

PIP, = MAMA 
-1 

M = ; KIMi 
( > 

(17) 

i=l 

Finally, the boundary conditions of equations 
(6)- (9) are given by : 

f/=0: f’=O, v=v,, g=g W 
CLe ax 

uY;w-q=~~ (i = l-4) (18) 

q+oD: f’= 1, g= 1, yi= yi,. (19) 

Defining the element mass fractions of hydrogen and 
oxygen by 

F1 = Y, + Y3M1/M3, 

yz = Y, -I- Y3M,/2M3, 
(20) 

it is seen that equations (18), and ( 19)3 have the 
same form for the element as for the species mass 
fractions. For freestream air Y,, = F1, = 0 and Y& 
= yz2e = 0.232. Since a hydrogen/oxygen mixture is 
injected at a ratio C#J = Y;/Y,-, where yi- are the 
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mass fractions in the reservoir, one obtains in terms 
of4: 

Y,- = p,- = l/(1 ++) 

r; = ?z- = $/(l +C$). 
(21) 

Coupling functions 

As a reasonable approximation one may assume 
that the last term in equation (7) can be neglected. 
This is achieved by assuming Le = 1. Then, with the 
definition: 

h = c xh,(T), 
i=* 

(22) 

the temperature is expressed in terms of the enthalpy 
and of one of the species mass fractions, for example 

y2, by : 

dT=Ldh- 
(-AU dY 

CP (-vz)M,c, ’ 

d<. (23) 

As the heat of reaction: 

Ah, = c v,M,h,, 
i=1 

(24) 

is negative for exothermic reactions, a negative sign 
has been introduced in equation (23). With the 
definition of the non-dimensional total enthalpy: 

g = h,,(h + 4J2/2), (25) 

the temperature and its derivatives may be calcu- 

lated, once the solutions of equations (7) and (S), are 
obtained. Note that by working with the enthalpy 
the assumption of constant cp has been avoided and 

the following relation for the mean specific heat 
capacity may be used : 

cp = c &Cpi. (26) 
i= 1 

The coupling functions for the mass fractions Y, and 
Y3 are readily obtained as: 

dY, = 
VI MI 
--dY2 
vzM, 

dY, = 
VJM, 

(27) 

----dY,. 
v2M, 

The reason why the mass fraction of oxygen rather 
than hydrogen should be used as a reference variable 
lies in the fact that oxygen is present in both, the 
injected mixture and the freestream flow. 

Asymptotic analysis 

It is the aim of this section to derive an equation 
for the unknown critical freezing temperature. For a 
given flow condition the Damkohler number Da and 
the activation energy T, are known and we expect 
the non-dimensional freezing temperature 0, to be a 

function of these parameters. For this reason we 
consider the mass fraction equation (8) for species 2, 
while the temperature and the other mass fractions 
are determined by the aid of the coupling functions. 
In order to justify the flame zone model we search 
for a condition that results in an abrupt transition 
from equilibrium to frozen flow. Physically it is 
evident that this transition must pass through 
chemical non-equilibrium but we expect the non- 
equilibrium to be confined to a very small region 
that has the character of a boundary layer. Thus we 

introduce a small parameter E, to be defined later, 
which is a measure for the width of the small 
transition layer between the equilibrium and the 
frozen flow. However, in the attempt to expand all 
terms of equation (8), in terms of E, one immediately 
faces the problem of how to treat the exponential 
dependence of the reaction rate upon temperature. 
From a physical point of view, one realizes that if the 
reaction rate is to take place at a finite rate, a large 
activation energy requires a large frequency factor 
also. As the Damkohler number in our definition 
may be regarded as a non-dimensionalized frequency 
factor, we cannot expect it to be independent of the 
activation energy T,. Thus, as we expand all 
variables algebraically in terms of E, we shall expand 
the product Da exp( - TJO,) rather than Da itself. 

With the definition: 

Da, = Da exp( - c/H,), (28) 

the non-dimensional production term takes the 
following form : 

xexp[--:e-l)lZ. (29) 

For T, + CC the exponential term in equation (29) 
has the limit: 

Since the production rate is balanced by the non- 
zero left hand side of equation (8), this limit leads to: 

(a) chemical equilibrium for 0 > H, 

with Z = 0, 

i.e. x = yeq, 0 = u,,; (31) 

(b) frozen flow for Q < 8, 

with &Ii = 0. (32) 

Thus the flame zone model of Libby and Economos 
[l] is implicitly based upon the assumption of a 
large activation energy. Let us assume that the 
transition from equilibrium to frozen flow occurs 
from the right to the left as it is schematically shown 
in Fig. 1, such that for infinitely large values of T, 
equilibrium prevails for n + qe and frozen flow for r~ 
< qe. Then, in order to analyse the non-equilibrium 
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e eq 

FIG. 1. Schematic representation of the freezing condition 
and of the transition layer. 

/ We investigate the following possibilities: 

(A) h is of order O(1); 
(B) b is of order O(E); 
(C) b is of order O(s’) or smaller. 

transition layer, we stretch the q-co-ordinate around 
qe according to 

“&M’ 
(33) 

E 

Stretching of the &co-ordinate would be inconsistent 
with the boundary-layer assumptions and the neglec- 
tion of the second derivative in S-direction. Ques- 
tions arising at this point will be discussed with the 

results of the catculation. 
In the transition layer the mass fraction Yz, the 

temperature and the equilibrium function are expan- 

ded in terms of E as: 

Y, = Y,,+ecr(i)+... 

f? = @,+&z(T)+... (34) 
2 = z,+&Z~(~)+EZZ*(~)3-.... 

Inserting the expansion (34), into the exponential 

term of equation (29) 

expI-~~-l)l=exp[~~*+...], (35) 

it is seen that a convenient definition of E is given by: 

E = 0f/T,. (36) 

Thus, in the transition layer (8), takes with equa- 
tions (29) and (33)-(36) the form: 

1 CLe a20 (-) -+(-v2)gQk& -f- 6> 
“, 

=:- 
E or cai2 

8”’ E 
e e 

x exp?(Z,+sZ1 f&22, *..) + O(E). (37) 

It is seen that the convective terms are of lower order 
compared to the diffusive term and may thus be 

neglected. Furthermore, as the equation in the 
transition layer must join the chemical equilibrium 

on one side and the frozen flow on the other it is 

necessary that the chemical production term is 
retained. This implies that Da, is at least of order 
O(~/E~) and that thus to zeroth order the equilibrium 
function must vanish: 

Z, = 0. (38) 

By comparison with equation (31) this shows that 0, 
and Y,, are the equilibrium values at qc to be 

determined by the law of mass action. 
Now, as we have to deal with a non-premixed 

system, there are three different orders of magnitude 
of the ratio 2,/Z, to be considered. From the 
relations derived in Appendix I, it is seen that this 
ratio may be expressed in terms of the parameter: 

It will be seen that the intermediate case includes the 
two other ones as limiting cases, thus the analysis 
will be performed for this case only. We write: 

b = f;E, (40) 

where 6 is of order O(l), such that Z is expanded as: 

Z=E’;$ [(z-eb,i)‘-b(z-t”b,i)l..., (41) 
ea 

where the relations derived in Appendix I are used. 
Here 0& denotes the slope of the temperature profile 
on the equilibrium side of the transition layer at qc. 
In Appendix I it is also shown that the only suitable 
reaction orders are n1 = n2 = 1. Using these values 
we expand the Damkijhler number Da, in the 
following way: 

= $ (A0 + . . .), (42) 

where A0 is of order O(1). Inserting equations 
(41)-(42) and (AlO) into (37) one obtains: 

d2r 

z- - - A,[(z - &,[)’ -&z - O,,i)] exp X. (43) 

This equation contains the eigenvalue A, which is to 
be determined as a function of 6, O& and the 
boundary conditions. The boundary conditions are 
obtained from matching with the outer solutions, i.e. 
the frozen flow on the left and the equilibrium on the 
right of the transition layer. As the flame zone model 
implies that the ~m~rature in the equiJibrium 
region is higher than t?,, a formal expansion shows 
that in the limit r, -+ co there cannot be any higher 
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order correction of the local equilibrium solution. 
Thus, the outer solution on the equilibrium side of 
the transition layer is given by: 

0 = Q,,(V). (44) 

Also, since the freezing temperature is the equilib- 
rium temperature at vC, we can expand Be4 around qC 
into a Taylor’s series: 

Be* = e,+(r/-Q)eg,.... (45) 

On the frozen flow side one may write the outer 
expansion : 

0 = ef(q)+&eyyY/). . , (46) 

where 8, and f#) are solutions of the frozen flow 
temperature equation, to be derived from equations 
(7) and (8), with the use of coupling functions. The 
boundary conditions imposed at qC are obtained 
from matching with the solution in the transition 
layer. Matching is affected through introduction of 
an intermediate variable vi,,, in terms of which rl and 
c may be expressed as : 

? = k(E)(Vim-)?c)+?r, 

i = (rlim-?c)k(E)/E, 

(47) 

where E CC k(s) CC 1. 
Between the frozen flow and the transition layer, 

the expansions (34), and (46) must overlap in the 
limit ; 

lim[0,+sr(I)...] = for [-+ --co 

iti(er+Eey)...) forr7-+?,. 
(48) 

Expanding 8, and 0, (i) into Taylor’s series around nC, 
we obtain in terms of vi,,, up to order E: 

++se:l) = ~,(vc)+&him-Vc)!$ 

9C 

+ &ep(fj,). (49) 

The limit (48) yields 6,(r7,) = BC and procures the 

boundary condition: 

r=$ i+e:‘)(;r?,) for [+ --co. 
9C 

(50) 

If f?y)(q,) was finite, the solution of equation (43) 
would depend upon a further unknown parameter 
with the consequence that the eigenvalue A0 could 
not be determined. However, let us extend the 
solution of r in terms of the outer variables into the 
frozen flow region. Using equations (33) and (34), 
we obtain: 

e = 8,+(~-fj.j~ +Ee:I)(f7e), 
4C 

(51) 

indicating that the flame introduces into the frozen 
flow solution a perturbation which does not decrease 
with the distance from the flame. This conflicts with 
the boundary condition imposed on the frozen flow 
at q = 0, which is independent of E. Thus we obtain 
($i(~,) = 0 and finally the trivial solution S:‘)(n) = 0. 

We note that no perturbations are introduced into 
the frozen flow by the flame. 

If the matching procedure is performed on the 
equilibrium side in the same way, we obtain finally 
the boundary conditions: 

(52) 

where @; denotes the slope of the frozen flow profile 

at t?=. 
The eigenvalue problem equation (43) with equa- 

tion (52) bears a close resemblance with equations 
that have been derived for one-dimensional premixed 

flames. For instance, in the special case &, = 0 and 
5 = 0, one obtains the equation that governs the 
flame propagation in a homogeneous mixture for 
second order chemical kinetics in the limit of large 
activation energies [S]. Then A, is the eigenvalue of 
the burning rate. If the reaction order is not 
prescribed and an analysis similar to the present one 

is performed for the flame propagation in a 
homogeneous mixture (Appendix II), one obtains 
equation (43) with /3& = 0. In this case equation (43) 
is readily integrated and the burning rate is obtained 
as a function of the fuel/oxidizer ratio of the unburnt 
gas. 

As the flame velocity of hydrogen-air mixtures is 
well known over a wide range of mixture ratios, the 
kinetic parameters B, n, and E which appear in the 
reaction rate (2) as well as in the burning rate 

formula can be determined by adjustment to expe- 
rimental data. Thus, the analogy between premixed 
flames and premixed burning in diffusion flames 
provides a relation between the freezing tempera- 
tures and the measured flame velocities and makes 
the flame zone model immediately applicable. 

A further connection exists between equation (43) 
and the equation that governs the premixed flame 
regime that L&an [IS] identified in the analysis of 
counter-flow diffusion flames. The transformation: 

m = - ege; - e;,), 
n = - [In 2A, - 2 ln(e;- ebl)]/m, 
? = -7+ee:,i, 

%= (e;-e&)i+n, 

(53) 

casts the problem equation (43) with equation (52) 
into a form similar to the one that Liiian used. One 
obtains : 

2% = (2’+&)exp(-5-&) 

?= -r+n for [-)--cc (54) 

S=O for <*co. 

Solutions of equation (54) must be sought by 
numerical integration. Since the objective of the 
asymptotic analysis is to derive a closed form 
equation for the freezing temperature, we need to 
know the dependence of the parameter n, which 
determines the eigenvalue AO, in terms of m and 6. 
Using limiting values of m and b, the following 
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approximation of a large number of numerical 
calcuiations in the range - 10 3 m & 0 and 0 > 6 

2 10 was obtained :, 

exp( -mn) = -’ 
fl(m)*fm 

b.fi(m)+2.fi(m)’ 
(55) 

where 

fX (m) = 0.6307m2 - t .344m + 1 

f2(mf = -0.56m3 + 2.36m2 -2,1274m + 1. 
(56) 

The constants in equation (56), were taken from [5] 
and the third constant in equation (5~6)~ from [8]. As 
no closed form solution of equation (54) could be 
found in the limit 6--+ 0, m -+ -co the first two 
constants in equation (56), were approx~ated from 
the numerical results. 

A schematic representation of the entire solution 
for the temperature profile is given in Fig. 1. In Fig. 
l(a) the outer solutions are shown to join each other 
at n, with the common value Bc. The slopes Q and @, 
are different at this point (they approach each other 
in the limit m --* - oc), and since an exothermic 
reaction takes place in the transition iayer, the 
condition &; 2 @& leads to m < 0. In Fig. l(b) the 
solution in the transition layer is shown in terms of r 
and the stretched coordinate 5. The solution r 
matches the straight lines which pass through the 
origin of the r-c coordinate system with the slopes of 
the outer solutions. If the solution in the transition 
layer is combined with the outer solutions, it assures 
a continuous slope of the entire solution and thus a 
smooth transition from equilibrium to frozen flow. 

It is readily seen that the case A is represented by 
the limit 6 + Of@) with equation (42) replaced by 

where ii, is related to A0 by: 

?i 0 = A&. (58) 

In this case Liiian’s premixed flame regime is 
recovered. Let us note that according to Appendix II 
the limit 6+0(1/s) occurs under either extremely 
lean or extremely rich mixture conditions only. Case 
C corresponds to a close-to-stoichiometric mixture, 
but Fig. 8 shows that 6 approaches the order O(E) 
only in a very narrow region. 

It must be stressed that the range of m was 
restricted to non-positive values. If m was positive, 
this would imply that there are ~u~ibri~ tempera- 
tures lower than Bc. This conflicts with the physical 
concept of freezing, and following the argumentation 
that led to equation (44), higher order terms would 
have to be introduced on the equilibrium side. Liiian 
considered this case in detail and obtained leakage of 
both reactants through the flame. 

The change of physical significance as m becomes 
positive is atso illustrated by the results of a stability 

FIG. 2. Schematic representation of the evaluation of 
equation (59). 

analysis that was performed in [9] for Liiian’s 
premixed flame regime. This analysis showed that 
Liiiiin’s equation is unstable to small disturbances 
for m > 0 but stable for m < 0 and neutrally stable 
for m = 0. When the same sort of stability analysis is 
performed for the more general problem, equation 
(54), one obtains the same result. Thus, as m reaches 
the value zero we expect extinction to occur and in 
view of equation (53), we may deduce a very simple 
extinction condition for premixed burning in dif- 
fusion flames: Extinction occurs if the position of 
one of the transition layer reaches the temperature 
maximum. 

Finally, the approximation, equations (55)--(56), 
ieads with (23), (28), (41)-(423, (44) and (53) to the 
following relation in terms of the slopes (?$ and 0;: 

(59) 

f; = 0.286X& - 0.656@;6& + &;2 

fi = 0.560$(@; - Sk,) + 0.23268;; 

+0.12748’ B’ +V. 
fes f 

This is the desired equation which dete~ines the 
freezing temperature 0, as a function of the Damkoh- 
ler number Da and the activation energy T, at every 
station s’. Note that since the slopes @& and 0; 
appear always as products, the co-ordinate rl may be 
replaced by -9 and equation (59) is valid also in the 
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case where equilibrium is on the left side of II, and 
frozen flow on the right. 

As the equation is explicit in the DamkGhler 
number only, but not in B,, its evaluation may be 

performed in the following way, schematically shown 
in Fig. 2. First, the equilibrium temperature profile is 
calculated. At every point ‘1 the slope 0:, and the 
slope Q;, that an adjacent frozen flow would have at 
this particular point, is determined from the solution 
of equation (8), and the coupling function between H 
and Y2. When these values are introduced into 
equation (59) this results in two curves for the 
DamkGhler number: Da,(q), if the freezing occurs to 
the left side and Da,(q) if it occurs to the right. 
Entering into the Do-over-rl-plot at the value Da(S) 

which is prescribed according to equation (16) at the 
particular station .i, the freezing points qcI and qcZ 
are readily obtained. Moving upwards in Fig. 2 the 

freezing temperatures U,, and or2 are determined. 
This illustrates also that the freezing temperatures, 
though of the same order of magnitude, will in 
general be different. 

Furthermore it is seen that in the limit Du --t x 

the freezing points move to the wall and the edge of 

the boundary layer. Thus the equilibrium model 
emerges as a special case of the flame zone model in 
the limit Da + 3~. 

RESULTS AND DISCUSSION 

In order to demonstrate the use of the formula 
(59) we will consider the case (a) in [l], which is the 
most general one, where the freezing occurs on both 
sides of the flame. Among the various numerical 
examples presented in [l], those who are plotted in 
Figs. 13 and 16 with T,. = 600K will be examined in 
detail. The calculation uses the thermodynamic 

parameters of Table 2 in [ 11. In addition, the kinetic 
parameters B, = 1.08 x 1016cm3/(mols-1), n, = 0 
and E = 30 kcal mol-’ derived in Appendix II along 

with 11, = n2 = 1 will be used. 
The calculation procedure follows closely the one 

presented in [l], as far as the calculation of the 
flowfield, the enthalpy and the element mass frac- 
tions is concerned. Thus the assumptions Le = Pr 
= C = 1, /I = 0, V, = constant and local similarity 
are used in spite of the non-similarity effects imposed 
by the production rate. The calculation is performed 
for various values of s‘, so that a freezing contour 
rather than freezing points will be obtained in the S- 
q-plane. 

The following straight forward procedure will be 
employed : 

(I) The element mass fraction profiles are 
calculated ; 

(2) The freezing point qcl is prescribed ; 
(3) The oxygen mass fraction at the wall and the 

wall enthalpy are calculated with equations (42) 
and (44) given in [l]. (Note that the indices 1 
and 2 are to be interchanged and that there 
should be a sign of multiplication between the 
two lines of equation (44) instead of a + sign) ; 

(4) With the wall enthalpy known, the enthalpy 
profile is given and the equilibrium solution is 
calculated using the law of mass action, i.e. 
equations (40) and (41) in [l]. 

Now, the formula (59) may be evaluated. To do this: 

(5) The slope of the equilibrium temperature profile 
is calculated by the use of a finite difference 
formula and the slope 0; is obtained by differen- 
tiating equation (43) in [I] and the use of 
coupling functions ; 

(6) This determines Du, (qrl) and according to 
equation (16) the distance x from the leading 
edge ; 

(7) Finally, in the same way the second freezing 
point is obtained by calculating the curve Da,(q) 

and interpolating such that Da, = Da,. 

This procedure is shown in Fig. 3 for ucI = 1.0 
resulting in ~1~ = -0.1417 and Drl, = 2.466 x lo’, 
I = 0.5038m. The freezing temperatures are II,., = 
1.585 and H,., = 1.791. The temperature profile in 

the upper part of Fig. 3 shows a temperature 
maximum at TV = 3.75 while the flame sheet model, 
assuming complete combustion, would result in a 

singular maximum at the location of stoichiometric 
mixture q,, = 4.13. Since there is practically no fuel 
present in the frozen flow region on the right hand 
side of qc2, the frozen flow temperature profile differs 

very little from the equilibrium profile. On the 
contrary, the freezing on the fuel rich side at qrl 
exhibits the true character of premixed burning, and 
the frozen flow temperature profile (dotted line) is 
quite different from the equilibrium temperature 
profile. This is due to the fact that a partly premixed 
stream is injected into the boundary layer at the wall. 

FIG. 3. Temperature protile and h-numbers for qc, = 1.0. 
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FIG. 4. Temperature profile for qC, = 2.2. 
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FIG. 5. Mass fraction protiles for qCI = 2.2. 

When the calculation is repeated for larger values 
of uCI, the Damkohler number (and thus x) de- 
creases and both freezing points move to higher 
freezing temperatures. For nC, = 2.2 one obtains y, = 
-0.031, Du, = 9.8 x lo4 and x = 2mm, qCZ = 3.62, 
Bcl = 2.17 and QpZ = 3.75. Here the second freezing 
point is close to the temperature maximum. The 
temperature and mass fraction profiles in Figs. 4 and 
5 show a deviation between the equilibrium and 
frozen flow solutions in both frozen flow regions. 
The mass fraction of H,O peaks at qCI = 2.2 rather 
than at qSt = 4.13 as would be predicted by the flame 
sheet model. If local chemical equilibrium was 

assumed everywhere (equilibrium model), the Y,- 
profile has a maximum at the wall, since the injected 
oxygen is immediately consumed to yield water. 

In Fig. 6 the boundaries of the equilibrium region 
qeI and qe2 and the value (1 -g,,). which is a measure 
for the heat transfer to the wall, are plotted over the 
logarithm of the Damkohler number (the cor- 
responding values of x are shown on the top of the 
figure). As one moves from large to lower values of 
Da, the equilibrium region becomes smaller. From 

flame zone 

0.7 
,%,” -- 

ld to5 lo6 IO7 1O8 

FIG. 6. Two-dimensional flame zone and wall heat transfer. 

the lower part of Fig. 6 it is seen that the heat 
transfer increases as the flame zone approaches the 
wall. At the intersection of the line of maximum 
temperature qmax with qc2 the second transition layer 
becomes unstable since m has the value zero. Thus 
no stable flame zone can exist for Damkohler 
numbers lower than Dc~,,,~~(x,,,J. We must keep in 
mind that due to the boundary-layer assumptions, 
which neglect diffusion in x-direction, we deal with a 

flame that propagates in q-direction only. Thus in a 
flat plate flow we have to take care that the flame 
has already been stabilized upstream and that stable 
burning is assured at least up to the position x,,,~,,. 
This can be done by placing an obstacle into the 
boundary layer that reduces the tangential flow 
locally to values lower than the flame velocity and 
thus acts as a flame holder. 

The situation is somewhat different in a blunt 
body flow. In this case we would have to consider 
first the stagnation point boundary layer where the 
principal flow direction is normal to the surface. 
There we would obtain a plot of qCI and qC2 over Da 
similar to Fig. 6, but the Damkohler number is then 
formed with the freestream velocity gradient du,/dx 
(instead of u,/x) and the minimum Damkiihler 
number defines the maximum velocity gradient for 
which a stable flame can be obtained. Any increase 
beyond this value would then result in an extinction 
of the flame in the stagnation point region. When 
this happens, the flame will be swept downstream 
and, due to the parabolic character of the boundary- 
layer flow, it can be stabilized in the wake of the 
body only. 

Let us note that the physical concept of Lifian’s 
premixed flame regime differs from the present one in 
the following way: the flame zone model is restricted 
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to the case where an equilibrium region is bounded 
by two transition layers, while Liiian’s premixed 
flame regime assumes a single layer where the frozen 
flow covers the region of stoichiometric mixture. The 
two models join each other, except for the kinetics, 
for case (b) considered in [l]. In this case the 

freestream temperature is higher than the freezing 
temperature and equilibrium is maintained in the 
outer part of the boundary layer. This corresponds 
to Lirian’s case 2/I > 1 where m is negative resulting 

in a stable transition layer. 

CONCLUSIONS 

1. The concept of a critical freezing temperature is 
equivalent to the concept of flame propagation 
within an inhomogeneous medium. The flame zone 
that exists in the center of a diffusion flame may be 
interpreted as an equilibrium region generated 

between two flame fronts that move in an opposite 
direction away from each other. This flame pro- 
pagation requires, that the equilibrium temperature 
is equal or higher than the temperature in the flame 

front, otherwise the flame propagation would be 
unstable. 

The concept of freezing temperature has the 
advantage to include the case where the premixing is 
low with the burning being stabilized by the heat 
transfer from the equilibrium region. In the limiting 

case of a non-premixed system a freezing tempera- 
ture can still be defined, but then the frozen and 
equilibrium temperature profiles become identical. 

2. The flame zone model uses more physical 
information than the flame sheet model and is also 
somewhat more difficult to handle. In exchange, it 
provides more realistic results, and it should replace 
the flame sheet model in all cases where premixing is 
important. In particular, in flames close to extinction 
the information provided by finite chemical kinetics 

will be essential. 
3. Finally, the analogy between the process of 

freezing and flame propagation provides realistic 
kinetic parameters and an insight into the accuracy 
that may be expected by this one-step-reaction 

model. 
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APPENDIX I 

The expansion coefficients Z, and Z, of the equilibrium 
function Z are defined as: 

z, 2 1 d2Z 

ds ,=a’ 
-G=js (Al) 

r=0 

Since any function in equation (34) may be expressed in 
terms of 0 and 4 we write at q = qC: 

As all partial derivatives are to be evaluated at qe where 0 
= 0, is an equilibrium value, we replace the indices by the 
common index eq. From Z(0,. n,) = 0 we obtain: 

and thus with equations (33)-(34) 

(A3) 

(A4) 

A first differentiation for Z, yields: 

As we consider the case B, where Z,, = (aZ/i%),, is of order 
O(s) we get similarly: 

and further 

where the relation (A3) and 

was used. Thus we obtain for Z,: 

Z, =;gI,,(r-;I.,<)‘- (A9) 
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Also, using the coupling function between T and Y, we 
obtain for (r: 

Matching with the outer solutions: 

The partial derivative of the equilibrium function Z with 
respect to temperature at chemical equilibrium is: 

While the two terms of the equilibrium function are equal 
by definition, in the derivatives the last terms containing 
the equilibrium constant K, are dominated by the terms 
containing Y, and Y2. From (All) we see further, that in 
order to avoid physically meaningless singularities in the 
second derivative, the reaction orders r-t, = n, = 1 are 
suggested. This leads to: 

(Al2) 
eq 

and to the second derivative: 

(Al3) 
e4 

These equations simplify further in the case of a very lean 
(Yi,, << 1) or very rich (Yz,, << 1) mixture. The partial 
derivatives with respect to the temperature, as obtained 
from the coupling functions, involve the heat of reaction. 

APPENDIX II 

The steady, one-dimensional, plane, laminar flame pro- 
pagation at constant pressure in a homogeneous mixture is 
described under the assumption of a one-step-reversible 
reaction by the solution of the equation: 

(Al4) 

Yl = Yl - I 
for X+ --CCI 

Yi = Yi,, for x+ +E, 

where equation (2) and the coupling functions are to be 
used. Here (PV)~ is the mass burning rate to be determined. 
In terms of the co-ordinate 

s = exp (Al5) 

the equation reduces with n, = n, = 1 to 

2 d2Y, (-v,)BT”$D 
.s v= 

(pu)SM, exp 
(Al6) 

Here the temperature has been non-dimensionalized by the 
adiabatic flame temperature T&. 

The location of the flame is given by s = 1. In the limit of 
large activation energies one introduces the expansion (34) 
and obtains in terms of the stretched co-ordinate 

S-l 
5=E. (Al7) 

by the same procedure as above: 

d% 
@= - A0(r2 - 62) exp r 

where A, is given by: 

=$(&+..J (A19) 

Y,= Y,_,+S(-Y~_m+YhJ ocs< 1 

Y\ = Y,eq s> 1, 
(A20) 

yields the boundary conditions 

z =; (r,e,-K-,)t for t_a, 

1 -2 

t=O for {+co. 
6421) 

When (A18) is integrated between 5 = - 00 and 5 = + oz 
one obtains 

(Y*,,- Y,_,) 1 2 = 2n,(l;+2). L422) 
With U = 1 and the approximation 

(a2zias2),, = 2(aY,ias),,cay,/as),, 

this leads finally to the burning rate formula 

(pu)r = A 

where the coefficient A: 

c,,,RM,T,2,(-v,) 
A = EC--AhJ&‘-m- YieJ 

(~24) 

reduces for constant Ah,,, and cp to 

RT,‘, 
‘4 = r.lT .r \. (~25) 

JJLleq -‘-ml 

This formula is a generalized form of the burning rate 
formula derived by an order-of-magnitude analysis by 
Zeldovich and Frank-Kamenetzki [lo]. It includes his 
formula for first and second order reaction as special cases. 
It will be evaluated for the hydrogen-oxygen reaction with 
the aim to determine B, n, and E by comparison with 
measured flame velocities. The result of this comparison is 
at the same time a measure of the accuracy that may be 
obtained by the use of one-step-reaction kinetics. 

Extremely different values of the activation energy are 
reported in the literature: From ignition temperatures, 
Mullins and Penner [ 111 obtained a value of 57 kcal mall’ 
while Fenn and Calcote [12] got a value of 16 kcalmol-’ 
from an empirical relationship between the activation 
energy and the lean limit flame temperature in flame 
propagation measurements. These two values were inserted 
with n, = 0 into (A23)-(A24) and B was adjusted in order 
to give a maximum flame velocity of 2.75m s-‘. The 
comparison with the measured flame velocities of Scholte 
and Vaags [13] in Fig. 7 shows that the peak of the 
theoretical burning velocities occurs at about 32% Hz, 
where the equilibrium temperature has a maximum, rather 
than at 43% H, obtained from the measurements. The 
57 kcal mol-i-curve approaches the measurements better 
on the lean side, while the 16 kcalmol-‘-curve is better on 
the rich side. As a compromise we adopt the value E= 
30 kcal mol- ’ resulting in B= 1.08 x 10’6cm3mol-‘s-‘.The 
shift of the maximum to the rich side is probably due to the 
influence of diffusion. The diffusion coefficient of H, in N, 
is about 3 times greater than that of 0, in N,, and in rich 
H, flames the excess H, will enhance the burning rate. This 
could be corrected by introducing a mixture dependent 
diffusion coefficient, but since this effect is particular to the 
combustion of hydrogen, while the aim of the analysis is 
more general, we do not want to complicate the equations. 

It is interesting to consider the relative influence of the 
three terms in square brackets in (A23) as well as the 
coefficient 6 which is the quotient of the sum of the first and 
third to the second term. Figure 8 shows that the first term 
vanishes in fuel rich and the third term in fuel lean 
mixtures, while the second term varies mainly in the same 
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FIG. 7. Experimental and predicted flame velocities 

FIG. 8. Comparison of the different terms in (A23). 

way as the square of the equilibrium temperatures having a fuel/oxidizer ratio. In very lean or very rich mixtures only 
flat maximum at about 32:; H,. Consequently, 6 has a the deficient reactant controls the burning rate and this 
minimum of about 0.35, to be compared to F. z 0.16, at the corresponds to a reaction order one for this reactant. In a 
stoichiometric mixture and it attains large values for very close-to-stoichiometric mixture both reactants are rate 
lean or very rich mixtures. This indicates that to prescribe determining leading to a reaction order two in the 
the reaction order is essentially an assumption about the Zeldovich-Frank-Kamenetsky formula. 

COMBUSTION AVEC PREMELANGE DE FLAMMES DE DIFFUSION 
LE MODELE DE LA ZONE DE FLAMME DE LIBBY ET ECONOMOS 

R&me---On montre que le modele de la zone de IIamme proposk par Libby et Economos est bast: sur 
l’hypothese d’une r&action chimique riversible avec une grande inergie d’activation. La limitation aux 
energies d’activation grandes est exploitie par la mithode des dCveloppements asymptotiques et on 
ttablit la relation manquante de la tempkrature critique de figeage, essentielle au modtle de la zone de 
Ramme. On montre que ie processus de figeage est ~troitement reli& i la propagat~ol~ de la flamme dans 
nn mtlange non-homog&e. Le traitement est gCniral mais, en suivant I’article original, les r&suitats 
num&iques sent prtsentts pour une flamme de diffusion prtmtlangie en couche limite avec similitude 
locale. La zone dc Hamme est construite comme une rtgion bidimensionnelle d‘iquilibre chimique, limit&e 
par dew couches infiniment minces hors d’equilibre qui assurent la transition avec 1’6coulement gel& 

environnant. 
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VORGEMISCHTE VERBRENNUNG IN DIFFUSIONSFLAMMEN-DAS 
FLAMMENZONENMODELL VON LIBBY UND ECONOMOS 

Zusammenfassung-Fiir das von Libby und Economos vorgeschlagene Flammenzonenmodell wird 
gezeigt, das es auf der Annahme einer Ein-Schritt-Reaktion mit einer grol3en Aktivierungsenergie beruht. 
Der Grenzfall grol3er Aktivierungsenergien wird mit Hilfe der Methode der angepal3ten asymptotischen 
Entwicklungen behandelt und die urspriinglich fehlende Beziehung fitir die Einfriertemperatur, die 
wesentlich fiir das Flammenzonenmodell ist, wird hergeleitet. Es stellt sich heraus, da0 der EinfrierprozeB 
mit der Flammenausbreitung in einem inhomogenen Gemisch verwandt ist. Die Herleitung ist allgemein, 
die numerischen Ergebnisse werden jedoch in Anlehnung an die Originalarbeit fiir eine Grtlich Ihnliche, 
teilweise vorgemischte Grenzschicht-Diffusionsflamme dargestellt. Die Flammenzone wird als ein 
zweidimensionales Gleichgewichtsgebiet konstruiert, das durch zwei unendlich diinne Nichtgleichgewich- 

tsschichten begrenzt ist, die den obergang zur umgebenden eingefrorenen StrGmung sicherstellen. 

l-OPEHME IlPEflBAPMTEJIbHO CMEIIIAHHbIX KOMflOHEHTOB B )JM(P0Y3MOHHbIX 
QAKEJIAX. 30HAJIbHAJI MODEJIb FIJIAMEHM JII46EA I4 3KOHOMOCA 

AHnoraunn- FloKa3aH0, VTO 30HanbHax Monenb nnahieHq npeanoxeHHaa JIM6611 w ~KOHO~WOCOM, 
OCHOBaHa Ha nOn,'U,eHHH HanHYHll OLlHOCTyneHqaTOii 06paTHMOti XHMH’iCCKOi? peaKU&iH npH 6onbmoii 

Be."W,HHe 3"eprHH BKTnBaUHH. MeTOnOM CpamHBaHHI aCHMnTOTWYeCKWX pa3flOZKeHHii C HCnOJIb30Ba- 

HWeM IlpeAeJa 6onbmex 3Heprlifi aKTHBaUHH BbIBelleHO COOTHOmeHHe JJJIS KpEiTH'IeCKOfi TeMnepaTypbI 

3aMopaxnBaHwi. KoTopoe panee He wnonb3oBanocb B 3oHanbnoii MonenB nnaMeHn, ~0 ~0~0p0e 

IlBJIfleTCR BeCbMa Cy‘UeCTBeHHbIM NISI RaHHOfi MOneJUi. HalneHo, 'IT0 npOUeCC 3aMOpawtHBaHHfl TeCHO 

CBII3aH C npOUeCCOM paCnpOCTpaHeHHR nJIaMeHW B HeOAHOpOnHOfi CMCCU. npeLWaWleHb1 'IHCJIeHHbIe 

pe3yJlbTaTbl L,,,ll npeABapHTeJIbH0 'IaCTHVHO nepeMemaHHOr0 LIH~&!SHOHHOrO nJ,aMeHW B JlOKaJlbHO 

nono6HoM nOrpaHH'lHOM CJlOe. 30Ha @Kena IlpJlCTaBJleHa KaK LlByMepHaSl 06JIaCrb XHMHYeCKOr0 

paBHOBeCH%, OrpaHWeHHaR nByMS3 6eCKOHeqHO TOHKHMU HepaBHOBeCHbIMH C,,OlIMH, KOTOPbIe CBHJ,e- 

TCJIbCTB,',OOT 0 HaJIHSHH ne&EXOl,a B OKp,'xaEOmHfi 3aMOpO~eHHbIti nOTOK. 
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